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Part 1



Lapse

Under-addressed issue in life insurance

In Malaysia, approximately 1 policy lapse for every 2 new cases

Two steps forward, one step back

Similar story everywhere else in the world



Predictive 
Analytics

5

Group of 

Consumers

Lapse

Score
81 22 2532 43 14441311 9 1333

Average 
score 

27

3X 
more 

likely to 
lapse

3X less 
likely to 

lapse



Predictive
Analytics

Professionalism

Communication

Change management 

Ambition & vision

Subject matter expertise

Mathematical

Data handling

6

Leadership & 
drive

Minimum 
requirement

Sustainability & 
excellence

Research 
Prototype



Objectives

Interest in 
consumer 
behaviour.

Invest time to 
build model 

without data. 
Codes and 

report available 
to everyone.

Gather 
feedback, 

promote use of 
model, share 

with me 
implementation 

results.



Part 2



GLMs

Generalised Linear Models (GLM) is a family of statistical models

Y = g-1(Xβ)

lapse = g-1(data × β)

“data can explain lapses”

g is the “link function”



Exploratory
Analysis

The following data fields were available:

Use histogram, density plots, boxplots and scatterplots etc high 
school statistics to visualise your data.

Lapse Exposure Whole Life Term Others

Single 
Premium

Duration 0 Duration 1 Duration 2
Financial 
Year 2008

Financial 
Year 2009

Financial 
Year 2010

Financial 
Year 2011

Company



Multicollinearity

One weakness of basic GLM is that it cannot easily deal with 
multicollinearity between the explanatory variables i.e. the 
“data”.

There is no fixed rule to confirm multicollinearity problem or 
otherwise. 

Examine Pearson’s coefficient of correlation for each pair and 
Variance Inflation Factor.



Pair
Correlation

Examine Pearson’s coefficient 
of coefficient for each pair of 
explanatory variables.

ot (products group others) and 
d0 (duration 0) have a 
correlation of 0.59.

Further consideration during 
modelling stage.



Variance
Inflation Factors

𝑉𝐼𝐹𝑖 ≥ 5 indicates possible problem

𝑉𝐼𝐹𝑖 ≥ 10 indicates almost certainly a problem

Clear that with explanatory variable company in the data it will 
create significant multicollinearity issues. We create two models, 
“company only variable model” and “all other variables model”.

Explanatory Variable VIF without company VIF with company

Wl 1.2275 93.7007

Tm 1.3288 87.0183

Ot 1.6735 44.3866

Sp 1.1019 4.1908

d0 1.7133 14.3445

d1 1.2076 1.7100

d2 1.1929 1.9343



Poisson
Model

Lapse can be modelled as a count variable.

Use log link function. 

Saturated model: log 𝑙𝑎𝑝𝑠𝑒 = 𝛽0 + 𝛽2𝑤𝑙 + 𝛽3𝑡𝑚 + 𝛽4𝑜𝑡 +
𝛽5𝑠𝑝 + 𝛽6𝑑0 + 𝛽7𝑑1 + 𝛽8𝑑2 +  𝑖 𝛽9𝑖𝑦𝑒𝑎𝑟𝑖 + log 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

Null model: log 𝑙𝑎𝑝𝑠𝑒 = 𝛽0 + log 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒



Poisson
Model

Explanatory

Variables

Intercept

Value

Intercept

P(>|z|)

Coefficient

Value

Coefficient

P(>|z|)

Residual

Deviance

Deg. of

Freedom
P(>Χ) AIC

Null -3.1142 <2e-16 NA NA 370830 74 NA 371710

saturated

wl

tm

ot

sp

d0

d1

d2

year1

year2

year3

year4

-2.7109 <2e-16

-0.6079

-0.8822

-2.2799

0.0875

2.5126

-0.0353

0.2756

-0.0487

-0.1282

-0.1436

-0.0915

<2e-16

<2e-16

<2e-16

<2e-16

<2e-16

0.0002

<2e-16

<2e-16

<2e-16

<2e-16

<2e-16

245520 63 <2e-16 246422



Overdispersion

Residual deviance ≈ residual degrees of freedom for a well-fitted 
model. 

Overdispersion arise when residual deviance > residual degrees 
of freedom i.e. variance of the observations > variance implied 
by the model. Here overdispersion arise due to: 

the use of summarised data 

potentially more useful and precise explanatory variables e.g. 
target market, distribution channels, and conservation 
strategy, are not examined. 



Overdispersion

refit the model with 
individual data 

refit model with better 
explanatory variables

extend the model to a 
quasi-Poisson model 
(variance is a linear 

function of the mean, 
“technical fix”)

use a negative binomial 
regression model 

(variance is a quadratic 
function of the mean, 

different likelihood 
function)

Ways to deal 
with 

overdispersion



Had we used the Poisson model, the predictive power would 
have been overstated.

Quasi-Poisson
Model

Explanatory

Variables

Intercept

Value

Intercept

P(>|t|)

Coefficient

Value

Coefficient

P(>|t|)

Residual

Deviance

Deg. of

Freedom

P(>F) Dispersion

Null -3.1142 <2e-16 NA NA 370830 74 NA 5470

saturated

wl

tm

ot

sp

d0

d1

d2

year1

year2

year3

year4

-2.7109 <2e-16

-0.6079

-0.8822

-2.2799

0.0875

2.5126

-0.0353

0.2756

-0.0487

-0.1282

-0.1436

-0.0915

0.0463

0.0007

0.0067

0.6143

0.0026

0.9542

0.6289

0.7356

0.3793

0.3225

0.5159

245520 63 0.0041 3972



Model
Selection

Starting 
incumbent 
candidate 

model is the 
saturated 

model. 

The partial F 
statistic for 

each 
explanatory 
variable is 

performed, 
creating 

challenging 
candidates. 

Identify 
explanatory 
variable with 

largest p-value, 
if the p-value 

lower than 5%. 

Model without 
identified 

explanatory 
variable 

replaces the 
incumbent 
candidate.

Process 
repeated until 
the largest p-
value is less 

than 5%.

Many different approaches to perform model selection.

Here a stepwise backwards elimination algorithm using the F-
test is used.



Stepwise Backwards 
Partial F-test Algorithm

Iteration Explanatory Variables Residual Deviance Deg. of Freedom P(>F) Action

1 none

wl

tm

ot

sp

d0

d1

d2

year

245520

261473

294659

275594

246531

278312

245533

246434

250843

1

1

1

1

1

1

1

4

0.0047

0.0007

0.0072

0.6124

0.0005

0.9537

0.6298

0.8490

remove

2 none

wl

tm

ot

sp

d0

d2

year

245533

261573

294705

276484

246535

279423

246881

250858

1

1

1

1

1

1

4

0.0450

0.0007

0.0060

0.6111

0.0042

0.5554

0.8452 remove



Stepwise Backwards 
Partial F-test Algorithm

Iteration Explanatory Variables Residual Deviance Deg. of Freedom P(>F) Action

3 none

wl

tm

ot

sp

d0

d2

250858

268286

302957

282919

251179

284990

253555

1

1

1

1

1

1

0.0332

0.0004

0.0044

0.7688

0.0033

0.3955

remove

4 None

wl

tm

ot

d0

d2

251179

269525

303196

283359

285887

253959

1

1

1

1

1

0.0280

0.0003

0.0041

0.0029

0.3852 remove

5 None

wl

tm

ot

d0

253959

271847

304112

290429

294118

1

1

1

1

0.0296

0.0004

0.0023

0.0014



Stepwise Backwards 
Partial F-test Algorithm

The backwards elimination algorithm yielded:

𝑙𝑎𝑝𝑠𝑒

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
= 𝑒−2.7469𝑒−0.6250𝑤𝑙𝑒−0.8666𝑡𝑚𝑒−2.3221𝑜𝑡𝑒2.5742𝑑0

Explanatory

Variables

Intercept

Value

Intercept

P(>|t|)

Coefficient

Value

Coefficient

P(>|t|)

Residual

Deviance

Deg. of

Freedom

P(>F) Dispersion

Backwards

wl

tm

ot

d0

-2.7469 <2e-16

-0.6250

-0.8666

-2.3221

2.5742

0.0288

0.0004

0.0023

0.0007

253959 70 2.6e-5 3700



Stepwise Backwards 
Partial F-test Algorithm

However, the coefficient for d0 is very high, which suggests:

First year policies have e2.5742 = 1312% higher lapse rates 
than other year policies

Lapse rate of 𝑒−2.7469𝑒2.5742 = 84.1% for first year 
endowment policies

Recall ot and d0 have a high Pearson correlation coefficient, and 
this has manifested into an unsatisfactory model. Consider 
dropping ot and/or d0.



Drop d0 is a weak candidate as coefficient ot has a high p-value. 

Judgment made to select drop ot instead of drop both as drop 
ot has higher functionality with an extra coefficient.

Applying 
Actuarial Judgment

Explanatory

Variables

Intercept

Value

Intercept

P(>|t|)

Coefficient

Value

Coefficient

P(>|t|)

Residual

Deviance

Deg. of

Freedom

P(>F) Dispersion

Drop d0

wl

tm

ot

-2.4144 <2e-16

-0.9900

-0.9357

-0.7734

0.0010

0.0004

0.3187

294118 71 0.0015 4472

Drop ot

wl

tm

d0

-2.5850 <2e-16

-0.9707

-0.8702

0.8259

0.0008

0.0009

0.1261

290429 71 0.0007 4212

Drop both

wl

tm

-2.4418 <2e-16

-1.0693

-0.9240

0.0002

0.0005

299293 72 0.0008 4499



Final Quasi-
Poisson Model

Product Type

Whole Life 0.38 Policy Duration

Base 

Lapse 

Rate

7.54% X
Endowment 

and Others
1.00 X First Year 2.28

Term 0.42
Subsequent 

Years
1.00

𝑙𝑎𝑝𝑠𝑒

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
= 𝑒−2.5850𝑒−0.9707𝑤𝑙𝑒−0.8702𝑡𝑚𝑒0.8259𝑑0

Multiplicative table :



Model
Diagnostics

Diagnostic tests, accompanied by generally accepted rule of 
thumbs, indicate where further investigations are required.

Studentised deviance residuals – model assumptions

Hat diagonals – observed response value to fitted value

Cook’s distance – observation on fitted values & coefficients

COVRATIO – observation on variance & covariance of coefficients

DFFITS – observation on fitted values

DFBETA – observation on each coefficients & intercept



Studentised Deviance 
Residuals Scatterplot

Roughly evenly distributed around zero, no specific patterns 

Values more than 3 are generally considered as outliers



Studentised Deviance 
Residuals QQ-plot

Approximately normally distributed

Deviation for tail values are common



Hat
Diagonals

Highly influential observations have hat diagonals larger than 
2 × (number of observations− residual degrees of freedom)

number of observations



Cook’s
Distance

Highly influential observations have Cook’s distance value higher 

than 
4

number of observations



COVRATIO

Highly influential observations are outside 1 ± 3 ×
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠− 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠



DFFITS

Highly influential observations have DFFITS outside ±2 ×

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠− 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠



DFBETA
Intercept

Highly influential observations have DFBETA outside 

±
2

number of observations



DFBETA
wl

Highly influential observations have DFBETA outside 

±
2

number of observations



DFBETA
tm

Highly influential observations have DFBETA outside 

±
2

number of observations



DFBETA
d0

Highly influential observations have DFBETA outside 

±
2

number of observations



Negative
Binomial Model

Similar to Poisson model i.e. lapse is modelled as a count 
variable, same log link function.

Main difference Poisson requires variance = mean but negative 
binomial only requires variance as a quadratic function of the 
mean.

Hence different likelihood function.



Negative
Binomial Model

Explanatory

Variables

Intercept

Value

Intercept

P(>|z|)

Coefficient

Value

Coefficient

P(>|z|)

Residual

Deviance

Deg. of

Freedom

P(>Χ) AIC Dispersion

null -2.7453 <2e-16 NA NA 79.094 74 NA 1621.8 3.0393

saturated

wl

tm

ot

sp

d0

d1

d2

year1

year2

year3

year4

-2.4589 <2e-16

-0.0919

-1.2438

-3.4574

0.1118

1.7782

-0.4115

0.1450

0.0763

-0.0071

-0.1309

-0.1025

0.7599

2.10e-8

1.31e-8

0.5171

0.0007

0.3343

0.7169

0.6210

0.9634

0.4013

0.5058

77.152 63 1.9e-7 1590.9 5.8395



Model
Selection

Starting 
incumbent 
candidate 

model is the 
saturated 

model. 

Challenging 
candidates are 
models each 
with one less 
explanatory 

variable than 
the incumbent 

candidate. 

Identify 
challenging 

candidate with 
lowest AIC, if 

AIC lower that 
of incumbent 

candidate. 

Model without 
lowest AIC 

replaces the 
incumbent 
candidate.

Process 
repeated until 

incumbent 
candidate has 

the lowest AIC.

Another model selection approach is to use the stepwise 
backwards AIC algorithm. 

AIC is used to compare between models, rule of thumb is that, 
all else being equal, the model with a lower AIC is better.



Stepwise Backwards 
AIC Algorithm

Iteration Explanatory Variables AIC Action

1 none

wl

tm

ot

sp

d0

d1

d2

year

1588.9

1587.0

1609.3

1606.2

1587.4

1597.7

1587.3

1587.0

1583.3 remove

2 none

wl

tm

ot

sp

d0

d1

d2

1583.3

1581.3

1602.3

1601.1

1581.7

1593.3

1581.5

1581.3 remove



Stepwise Backwards 
AIC Algorithm

Iteration Explanatory Variables AIC action

3 none

wl

tm

ot

sp

d0

d1

1581.3

1579.3

1600.3

1599.1

1579.7

1591.3

1579.5

remove

4 none

tm

ot

sp

d0

d1

1579.3

1598.8

1598.1

1577.8

1589.1

1577.6 remove

5 none

tm

ot

sp

d0

1577.6

1596.9

1596.1

1576.0

1587.5

remove



The backwards elimination algorithm yielded:

𝑙𝑎𝑝𝑠𝑒

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
= 𝑒−2.5630𝑒−1.1534𝑡𝑚𝑒−3.4043𝑜𝑡𝑒1.8449𝑑0

However, the coefficient for d0 is slightly high, implying first 
policy year lapse rate is e2.5742 = 633% higher than other policy 
years. Again judgment is required.

Stepwise Backwards 
AIC Algorithm

Iteration Explanatory Variables AIC action

6 none

tm

ot

d0

1576.0

1595.0

1594.2

1585.7



Recap

Give individual 
consumers a lapse 

score. 

This gives insights 
for more effective 

conservation 
actions. 

Model lapse as a 
count variable. Start 

with a Poisson 
model. 

Use quasi-Poisson 
or negative binomial 

due to 
overdispersion.

Use partial F-test for 
quasi-Poisson, AIC 

for negative 
binomial.

Apply judgment. 
Analyse diagnostics.



Also Available 
in the Paper

Assessment of 
Model Lift

Lapse modelled as 
a binary variable 

with binomial 
model 

Manipulation of  
summarised 
industry data

Company only 
model – biproduct
of multicollinearity

Accompanying R-
codes for 

generating results 
and graphs
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